Structural engineering

Structural engineering

Structural engineering

Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and muscles' that create the form and shape of man-made structures. Structural engineers need to understand and calculate the stability, strength and rigidity of built structures for buildings and nonbuilding structures. The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site. They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety. See glossary of structural engineering.

Structural engineering theory is based upon applied physical laws and empirical knowledge of the structural performance of different materials and geometries. Structural engineering design uses a number of relatively simple structural concepts to build complex structural systems. Structural engineers are responsible for making creative and efficient use of funds, structural elements and materials to achieve these goals.

The structural stability of the pyramid, whilst primarily gained from its shape, relies also on the strength of the stone from which it is constructed, and its ability to support the weight of the stone above it. The limestone blocks were often taken from a quarry near the building site and have a compressive strength from 30 to 250 MPa (MPa = Pa × 106). Therefore, the structural strength of the pyramid stems from the material properties of the stones from which it was built rather than the pyramid's geometry.

Throughout ancient and medieval history most architectural design and construction were carried out by artisans, such as stonemasons and carpenters, rising to the role of master builder. No theory of structures existed, and understanding of how structures stood up was extremely limited, and based almost entirely on empirical evidence of 'what had worked before'. Knowledge was retained by guilds and seldom supplanted by advances. Structures were repetitive, and increases in scale were incremental.

Structural engineers often specialize in particular types of structures, such as buildings, bridges, pipelines, industrial, tunnels, vehicles, ships, aircraft, and spacecraft. Structural engineers who specialize in buildings often specialize in particular construction materials such as concrete, steel, wood, masonry, alloys, and composites, and may focus on particular types of buildings such as offices, schools, hospitals, residential, and so forth.

Structural engineering has existed since humans first started to construct their structures. It became a more defined and formalized profession with the emergence of architecture as a distinct profession from engineering during the industrial revolution in the late 19th century. Until then, the architect and the structural engineer were usually one and the same thing – the master builder. Only with the development of specialized knowledge of structural theories that emerged during the 19th and early 20th centuries, did the professional structural engineers come into existence.

  • Planning and Design Process
  • Materials and Structural Design Criteria
  • Loads and Design Safety
  • Design of Structural Elements
  • System Design Concepts
  • Cable Structures
  • Prestressed Concrete Bridges
  • Constructability and Structural Control
  • Fire Protection
  • Advanced Engineering Mathematics
  • Industrial Management
  • Advanced Structural Analysis
  • Bridge Engineering
  • Structural Optimisation
  • Repair & Rehabilitation of Structure
  • Advanced Structural Design
  • Structural Dynamics & Earthquake Engineering
  • Theory of Elasticity & Plasticity
  • Prestressed Concrete Structures
  • Composite Material & Structures
  • Advanced Concrete Technology
  • Construction Technology & Management

Any Suggestion for Topics

255 character(s) remaining.