Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology

e
ISSN: 2584-0584, Peer Reviewed Journal 'ff ISRDO ﬂ

MATHEMATICAL MODEL FOR STOCK PRICE
PREDICTION USING LSTM NETWORKS IN
PYTHON JUPYTER NOTEBOOK

Dr Vivek Parkash
Assistant Prof. of Mathematics,
Dyal Singh College, Karnal (Haryana), India

ABSTRACT

Long short-term memory, called LSTM for short, is a kind of neural network technology with applications in deep
learning and artificial intelligence. By combining python code in a jupyter notebook with LSTM networks, which
stands for "'long short-term memory," | hope to accurately predict future price movements for TCS stocks that are
listed on the NSE. It will be decided whether the expected change in the price of TCS stock was similar to the actual
change. Prices from the previous several days of trade will also be used to set opening prices for the following 20
trading days.

Keywords: yahoo finance, long short-term memory networks, Keras, pandas, data frame, transfer learning, neural
network

Introduction

An artificially evolved neural network utilized in Al and supervised learning [6] is called long short-term memory.
A supervised learning, sequencing neural net which can remember information between training rounds is called a
Long Short-Term Memory Structure. It is a subset of RNNSs that can overcome the receding gradient issue often
encountered by RNNs. The LSTM algorithm, created by Hochreiter and Schmidhuber, is an improvement over
prior deep learning and recurrent neural network methods ([7]). The Keras package allows for LSTM to be
implemented in Python. (Shipra Saxena,2021).

Let's look at long-term, short-term memory network (LSTM) operations. Algorithms are utilized during the process
of machine learning. They have memory cells that store the assumptions of the earlier section using intrinsic
parameters, and these prognostications are used as input to anticipate the values of the following sequence.
Additionally, they have synaptic connections that are used to store the predictions of the importance of the previous
step. This is similar to using assumptions in a recurrence to get the following set of forecasts. To get things started,
we are now loading the data on the price movement of TCS stock. Yahoo Finance is what we're going to be utilizing
for this purpose. Yahoo Finance is a repository of stock price data. The following libraries and codes are used as
input in the jupyter notebook ([1],[4]).

After input, jupyter notebook yields the output:

10035 isrdo.com 1

https://www.analyticsvidhya.com/blog/author/shipra_saxena/

Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology

: Jupyter LSTM PYTHON Last Checkpoint: 21 hours ago (unsaved changes) P Logout
File Edit View Insert Cell Kernel Widgets Help sted ‘ Python 3 (ipykernel) C
B+ <@ B 4 ¥ [PRin B C W cCode v =

In [141]: import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np

In [31]:
stock_symbol = 'TCS.NS'

We have imported TCS stock data for three years daily, from 2020 till March 2023. After using the pandas
dataframe, we get [6],

In [31]:
stock_symbol = 'TCS.NS'

In [88]: #last 3 years data with interval of 1 day
data = yf.download(tickers=stock_symbol,period='3y"',interval="1d")

[ErexxExxRRR R R A RER] QOYH K XX EX KRR KR XK XX EXRX%%] 1 of 1 completed

In [89]: type(data)

Out[89]: pandas.core.frame.DataFrame

In [90]: data.head()

In [9@]: data.head()

out[9e]:
Open High Low Close Adj Close Volume

Date

2020-03-16 1755.000000 1842.250000 1675.849976 1696.400024 1595482544 7844271
2020-03-17 1730.000000 1731.000000 1623.150024 1658.000000 1559.366699 5713248
2020-03-18 1676.800049 1713550049 1627.750000 1654.400024 1555980957 7258778
2020-03-19 1559699951 1685449951 1546.750000 1636.349976 1550.249634 5135111

2020-03-20 1630.000000 1869.000000 1627.000000 1797.449951 1702.872559 8547498

In [91]: type(data)

Out[91]: pandas.core.frame.DataFrame

In [36]: len(data)

Out[36]: 1237
The open, high, and low values of TCS are shown here, along with the data for the close, adj. close, and volume.

Now, for the data prediction, | have considered the available prices of TCS so that after the prediction model, we
can fetch the forecast of general costs for the next 20 days.

10035 isrdo.com 2

Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology
In [143]: opn = data[['Open']]

In [144]: opn.plot()

Out[144]: <AxesSubplot:xlabel='Date'>

4000 - —— Open

3500

3000

2500 1

2000

1500 1

o o 0% o o> o ° o>
° 0>

o o
o) 1010 1‘3x 10—9 101\' 1011 1011 1011 20 1013
Date

I convert this data to a NumPYy array using the dot values function.

In [97]: ds = opn.values

In [98]: ds

Qut[98]: array([[1755. 15
[173e. 1,
[1676.88004883],
[1559.69995117],

[1638. i
[1620. i
[1653.85004883],
[1708. 1.
[1831.59997559],
[182e. i
[1766

. 1.
[1837.40002441],
[1825.9@002441],

[1740. 15
[1718. 1%
[1760. i
[1750.44995117],
[1761. 1
[1785. 1

To plot it, I import matplotlib.

10035 isrdo.com

Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology

In [99]: plt.plot(ds)

Out[99]: [<matplotlib.lines.Line2D at ©x26276bf3250>]

4000

3500 /.“ lefmfw M
oo] ;"f\;}'wN ﬂ/\l\‘,‘)
2500 1 J\J

ol

2000 M/"l

!

0 100 200 300 400 500 600 700

1500 4

We have used the min-max scaler function to assign values between 0 and 1. Let us understand with the help of an
example:

Suppose we have two values, x and y, where x is 0 to 50 and y is 100 to 500. Here LSTN will be more inclined
towards the greater value y. So, to normalize this feature, we use the normalization function. This function will
assign a value between 0 and 1 corresponding to any matter we give [2].

We have taken 80 % of the data as test data and 20% as train data.

In [204]: ‘from sklearn.preprocessing import MinMaxScaler

In [205]: normalizer = MinMaxScaler(feature_range=(0,1))
ds_scaled = normalizer.fit_transform(np.array(ds).reshape(-1,1))

In [101]: ‘len(dsiscaled), len(ds)

out[1e1]: (1237, 748)

In [206]: ize = int(len(ds_scaled)*0.80)
test_size = len(ds_scaled) - train_size

In [207]

out[287]: (598, 158)

In [208]: |#Splitting data between train and test
ds_train, ds_test = ds_scaled[8:train_size,:], ds_scaled[train_size:len(ds_scaled),:1]

In [209]: ‘len(ds_tr'ain),len(ds_test)

out[209]: (598, 15@)

For creating a time series dataset for LSTM mode, we take 120 days' price as a single data record for training.

10035 isrdo.com 4

Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology

In [234]: #X[120,146,160,180,200] : Y|
def create_ds(dataset,step):
Xtrain, Ytrain = [], []
for i in range(len(dataset)-step-1):
a = dataset[i:(i+step), @]
Xtrain.append(a)
Ytrain.append(dataset[i + step, @])
return np.array(Xtrain), np.array(Ytrain)

22¢

In [211]:
time_stamp = 120
X_train, y_train = create_ds(ds_train,time_stamp)
X_test, y_test = create_ds(ds_test,time_stamp)

In [212]: X_train.shape,y_train.shape

out[212]: ((477, 120), (477,))

In [213]: X_test.shape, y_test.shape

Out[213]: ((29, 120), (29,))

Now we reshape the data to fit into our LSTM model, and for Creating the LSTM model using Keras, we input
the code and get the output:

In [214]:
X_train = X_train.reshape(X_train.shape[0],X train.shape[1] , 1)
X_test = X_test.reshape(X_test.

In [150]:
model = Sequential()
model .add(LSTM(units=50,return_sequences=True,input_shape=(X_train.shape[1],1)))
model.add(LSTM(units=50,return_sequences=True))
model.add(LSTM(units=50))
.add(Dense(units=1,activation="1inear"))
. summary ()

Model: “sequential 2"
Output Param #

1stm 6 (LSTM) 120, 50)

1stm 7 (LSTM) 120, 50)

1stm_8 (LSTM)
dense_2 (Dense)
Total param

Trainable params: 50,851
Non-trainable params: ©

We are implementing the model with The Adam methodology is a kind of spontaneous gradient descent that is
predicated on the adaptive estimate and mean squared error loss function as below:

10035 isrdo.com 5

Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology

In [216]: model.compile(loss="mean_squared_error',optimizer="adam"')
model.fit(X_train,y_train,validation_data=(X_test,y test),epochs=100,batch_size=64)

e

Epoch 1/100

8/8 [] - 8s 285ms/step - loss: 0.0075 - val_loss: ©.0079

Epoch 2/100

8/8 [===] - 1s 126ms/step - loss: 0.0036 - val_loss: 6.0041e-04
Epoch 3/100

8/8 [] - 1s 12ims/step - loss: 0.0013 - val_loss: 0.0012

Epoch 4/100

8/8 [] - 1s 122ms/step - loss: 0.0011 - val_loss: 4.4437e-04
Epoch 5/100

8/8 [] - 1s 118ms/step - loss: 6.6024e-04 - val_loss: 3.1845e-04
Epoch 6/100

8/8 [] - 1s 120ms/step - loss: 6.0370e-04 - val_loss: 3.8974e-04
Epoch 7/100

8/8 [] - 1s 12ims/step - loss: 5.1632e-04 - val_loss: 2.6726e-04
Epoch 8/100

8/8 [] - 1s 121ms/step - loss: 5.1639e-04 - val loss: 2.7871e-04

Epoch 9/100

The below plot shows that loss has decreased quite a lot, and the model has been trained well.

In [152]: |loss = model.history.history['loss’]
plt.plot(loss)

0ut[152]: [<matplotlib.lines.Line2D at ©x2620b9c4850>]

In [217]: train_predict = model.predict(X_train)
test_predict = model.predict(X_test)

15/15 [] - 2s 32ms/step
171 .] - ©s 45ms/step

In [218]: train_predict = normalizer.inverse_transform(train_predict)
test_predict = normalizer.inverse_transform(test_predict)

In [66]: #Comparing using vi
plt.plot(normalizer.inverse_transform(ds_scaled))
plt.plot(train_predict)
plt.plot(test_predict)

5

The below plot shows that the blue curve is the actual data graph, an orange angle is the predicted graph of train
data, and a green curve is the expected curve of test data of TCS stock:

10035 isrdo.com 6

Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology

In [66]: |plt.plot(normalizer.inverse_transform(ds_scaled))
plt.plot(train_predict)
plt.plot(test_predict)

Out[66]: [<matplotlib.lines.Line2D at ©x262759e2a00>]

L

1000 1200

After combining the predicted data to create uniform data visualization (graph without discontinuity)
In [219]: type(train_predict)

Out[219]: numpy.ndarray
In [220]: test = np.vstack((train_predict,test_predict))

In [69]: plt.plot(normalizer.inverse_transform(ds_scaled))
plt.plot(test)

Out[69]: [<matplotlib.lines.Line2D at ©x2627598a040>]

4000 A

| h

N/W‘ [

1]»&
2000 [/(‘M‘/wg \N«\

1500 A

T T T T T T
0 200 400 600 800 1000 1200

Now fetching the last 120 days' records, creating a list of the previous 120 data, and predicting the next 20 days'
prices using the current data we have:

10035 isrdo.com 7

Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology

In [221]: ‘ len(ds_test)

Out[221]:

[222]: "Fut_inp ds_test[25@:]

[223]:"Fut_inp fut_inp.reshape(1,-1)

[224]:‘tmp_inp list(fut_inp)

In [226]:‘fut_inp.shape

out[226]: (1, @)

In [227]: |tmp_inp = tmp_inp[@8].tolist()

In [167]: |1st_output=[]
n_steps=102
i=e
while(i<20):

if(len(tmp_inp)>102):
fut_inp = np.array(tmp_inp[1:])
fut_inp=fut_inp.reshape(1,-1)
fut_inp = fut_inp.reshape((1, n_steps,1))
yhat = model.predict(fut_inp, verbose=8)
tmp_inp.extend(yhat[@8].tolist())
tmp_inp = tmp_inp[1:]
1st_output.extend(yhat.tolist())
i=i+l

else:
fut_inp = fut_inp.reshape((1, n_steps,1))
yhat = model.predict(fut_inp, verbose=8)
tmp_inp.extend(yhat[@].tolist())
1st_output.extend(yhat.tolist())
i=is+l

print(1lst_output)

[[©.7108184099197388], [©.7165108919143677], [©.7305189371109009], [0.7476314902305603], [0.7661316990852356], [0@.7852297425270
081], [©.8044221997261047], [0©.8234397172927856], [0©.8422471284866333], [0.860995888710022], [0.8799392580986023], [0.899342298
5076904], [0.9194039106369019], [0.9402101635932922], [0.9617148041725159], [0.9837561845779419], [1.00609290599823], [1.028449
296951294], [1.05056214332580857], [1.0722135305404663]]

In [229]: |len(ds_scaled)

Out[229]: 748

In [23@]: |plot_new=np.arange(1,121)
plot_pred=np.arange(121,141)

The orange curve below shows the predicted curve:

10035 isrdo.com 8

Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology

In [197]: |plt.plot(plot_new, normalizer.inverse_transform(ds_scaled[1117:]))
plt.plot(plot_pred, normalizer.inverse_transform(lst_output))

Out[197]: [<matplotlib.lines.Line2D at ©x2620fbdd490>]

There is some gap between the blue curve and the beginning of the orange turn. After making it continuous,

In [231]: ds_new = ds_scaled.tolist()
In [232]: | len(ds_new)
Out[232]: 748

In [200]: ds_new.extend(lst_output)
plt.plot(ds_new[1200:])

Out[200]: [<matplotlib.lines.Line2D at ©x2620fc41730>]

1.05 4
1.00 1
0.95 1
0.90 4

0.85 1

0.80 A //

—\
0.75 4 / \//f\

0.70 4

10035 isrdo.com 9

Vol-1 Issue-2 2023
Scientific Research Journal of Science, Engineering and Technology

In [233]: #Creating final data for plotting
final_graph = normalizer.inverse_transform(ds_new).tolist()

In [235]: final results with predicted value after 20 Days
“inal_graph,)

L("Price")

L("Time")

("{0} prediction of next month open".format(stock_symbol))

1e(y=final_graph[len(final_graph)-1], color = 'violet', linestyle = ':', label = 'NEXT 20D: {0}'.format(round(float(*final_graph[]
10

4 >

Out[235]: <matplotlib.legend.Legend at ©x2620fc17a90>

TCS.NS prediction of next month open

4000 NEXT 20D: 3208.0
n W
3000 1
v
2
&
2500 1
2000 A
1500 A
0 100 200 300 400 500 600 700

Conclusion

So, our model has successfully predicted stock TCS move for the next 20 days. This graph shows how well the
share has moved during the prediction period. This above-described model is for TCS stock. This model can be
applied to any other stock. All we must do is to import the corresponding stock data from yahoo finance. We can
change different parameters accordingly and tweak the parameters to get better results.

Disclaimer: Always consult your financial advisor before applying this model in a live market.

References

[1] https:/Amww.analyticsvidhya.com/blog/2021/12/stock-price-prediction-using-lstm/

[2] https://towardsdatascience.com/Istm-for-google-stock-price-prediction-e35f5cc84165

[3] https:/Amnww.datacamp.com/tutorial/lstm-python-stock-market

[4] https:/AMww.kaggle.com/code/faressayah/stock-market-analysis-prediction-using-Istm

[5]HongjuYan and Hongbing Ouyang. Financial time series prediction based on deep learning. Wireless Personal
Communications, 102(2):683-700, 2018.

[6] https://en.wikipedia.org/wiki/Long_short-term_memory
[7]https:/imww.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-Istm/

10035 isrdo.com 10

https://www.analyticsvidhya.com/blog/2021/12/stock-price-prediction-using-lstm/
https://towardsdatascience.com/lstm-for-google-stock-price-prediction-e35f5cc84165
https://www.datacamp.com/tutorial/lstm-python-stock-market
https://www.kaggle.com/code/faressayah/stock-market-analysis-prediction-using-lstm

	ABSTRACT
	Introduction
	Conclusion
	References

