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Abstract 

This paper presents the results of an experiment on the classification of extracted features from Software 

Requirements Specification (SRS) documents using various Machine Learning techniques. The primary 

focus was on the linear Support Vector Machine (SVM) technique, with comparative analysis involving 

three additional techniques, namely Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbors 

(KNN). During the experimentation, features, which are fundamental building blocks of Software 

Product Lines [1], were classified into optional and mandatory. This differentiation facilitates both 

variability and similarity within a product family [1]. While previous research has explored similar 

classifications using diverse techniques, this study specifically identifies the most effective method for 

binary classification of features for feature modeling. We conducted the experiment on nine selected 

documents from the PURE dataset. We evaluated the performance of each model rigorously based on 

accuracy, precision, recall (sensitivity), and F1-score. The findings provide valuable insights into the 

optimal classification technique, enhancing the development and management of software product 

lines. 
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1 Introduction 

The demand for mass production of software products has driven research into automating the 

extraction [2] and classification of features [2] from various sources, such as conversational agents, 

codebases, programme documents, user manuals and software requirements specifications documents. 

This automation aims to enhance production speed and precision while maintaining high-quality 

deliverables. In Software Product Line Engineering (SPLE), feature extraction and classification are 

essential for feature modeling [1], which identifies variability and commonality within a Software 

Product Family (SPF) [1]. Effective feature modeling necessitates categorizing features into "mandatory" 

and "optional" classes. The "mandatory" class highlights commonalities within an SPF, while the 

"optional" class underscores variations, facilitating a binary classification. 
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This research paper presents the results of classifying extracted features from Software Requirements 

Specification (SRS) documents using Machine Learning techniques, with a primary focus on the Linear 

SVM. Additionally, it explores the effectiveness of DT, NB and KNN. The study aimed to determine 

the optimal method for binary classification of features for feature modeling, tested on nine selected 

documents from the PURE dataset. We evaluated each model’s performance based on accuracy, 

precision, recall and F1-score. 

We structured the paper into Section 1: Introduction; Section 2: Materials and Methods; Section 3: 

Results and Discussions, and Section 4: Conclusion. Other sections discussed include Conflict of 

Interest, Author Contributions, Funding, Acknowledgements, and Data Availability. 

 

2 Materials and Methods 

The existing system in focused on automating feature extraction for Software Product Lines (SPLs) 

from Software Requirements Specification (SRS) documents. It involved extracting SRS documents to 

create raw data, preprocessing them for noise removal, and preparing them for NLP analysis using 

SpaCy and a trained model. Techniques like sentencization, tokenization, and noun chunking were 

employed for NLP tasks. However, the existing system has limitations that include inability to classify 

the extracted features based on their relationships and the lack of a catalogue for creating Feature 

Models (FMs). 

The proposed system aimed to enhance SPLE domain engineering by extending techniques for feature 

classification. It utilized Support Vector Machine (SVM) for classification, creating a catalogue for 

Feature Models. Features were classified as mandatory or optional based on relevance to functional 

requirements, with attributes like priority attached for additional context. Implementation involved 

using SVM and other classification techniques, particularly Decision Tree, Naïve Bayes and K-Nearest 

Neighbor for comparison. Python and SciKit Learn are used for implementation of the classification. 

The evaluation metrics for the proposed model included accuracy, precision, recall, and F1-score. We 

calculated the metrics based on True Positives (TP), False Positives (FP), True Negatives (TN) and 

False Negatives (FN). These metrics provided insight into the model's performance in binary 

classification tasks. The expected results included a feature catalogue with classified features, a 

complete system for feature extraction and classification, and improved efficiency and accuracy in 

feature model engineering. 
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Figure 1: Architectural Design of the Proposed System 

 

 

2.1 SVM Classification Technique 

SVMs are a recent development in supervised machine learning, based on statistical learning theory [3]. 

SVMs are built around the concept of a margin that maximizes the distance between data points on 

either side of a separating hyperplane, thereby reducing predicted generalization error [4]. This margin 

is key to SVM's ability to categorize data optimally by their positions relative to this boundary. 

In classification tasks, SVM is described as Support Vector Classifier (SVC) [5]. The formula f(x) = (w 

* x) + b [6][7] gives the decision function for a linear SVC. 

f(x) = output,  

w = weight vector,  

x = feature vector 

b = bias term.  

Predictions are made based on the sign of f(x). 

Key concepts include: 

● Support Vectors: Data points nearest to the hyperplane, critical for defining its position and 

orientation. [8][9] 

● Margin: This is distance between the hyperplane and the nearest support vector, which SVM 

aims to maximize. [8][9][10] 

● C Parameter: This manages trade-of between increasing the margin and reducing the 

classification errors. A smaller C will allow a larger margin with some misclassifications 

whereas a larger C reduces misclassifications at the expense of a smaller margin. [11] 
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SVMs are powerful popular tools for classification and regression [f], leveraging support vectors and 

margins to optimize performance. They handle complex data relationships effectively, especially when 

using techniques like the kernel trick for non-linear data. 

3 Results and Discussions 

Based on the results obtained in Table 1, performance of the proposed model is interpreted as follows: 

Precision measures the accuracy of positive predictions. In this case, the values of the precision are 

between 0.62 and 0.93. Higher precision indicates fewer false positives. 

Accuracy is the ratio of the accurately predicted observations to the total of all observations. It is a 

measure the overall correctness of a model. Values of accuracy of the proposed model range from 0.75 

to 0.95, which is generally good. 

Recall measures the capability of the model to locate the total relevant cases within the given dataset. 

It is the ratio of accurately predicted positive observations to the total observations in actual class. The 

recall values range from 0.70 to 1.00. 

Finally, the F1-Score considers both false positives and false negatives as it is the mean (weighted) of 

precision and recall. It balances precision and recall and the values range from 0.69 to 0.96. 

Summarily, based on the results provided, the SVM classification technique seems to perform well, 

with high precision, accuracy, recall, and F1-Score values for most of the feature extraction from 

requirements documents (CCTNS, DH, LIS, Agentmom, Mashbot, Microwave). However, for other 

systems like e-Store, Puget, and Pontis, the performance is comparatively lower, especially in terms of 

recall and F1-Score; an indication that SVM may not be as effective for these requirements systems, 

and further investigation or optimization may be needed. 

Table 1: Requirements Sentence Extraction Result Comparison using NLP in sPacy 

No  SRS  Precision Accuracy Recall F1-Score 

1  CCTNS  0.93 0.92 1.00 0.96 

2  DH  0.91 0.95 0.93 0.93 

3  e-Store  0.91 0.90 0.70 0.73 

4  LIS  0.81 0.90 0.90 0.85 

5  Puget  0.62 0.79 0.79 0.69 

6 Agentmom 0.80 0.80 0.80 0.71 

7 Mashbot 0.89 0.82 0.88 0.90 

8 Pontis 0.82 0.75 0.75 0.71 

9 Microwave 0.89 0.90 0.94 0.91 

 

Table 2. Success Rate for Feature Extraction 

No  SRS  Extracted Requirement Sentences Extracted Feature Success Rate (%) 

1  CCTNS  37  30  81.08 

2  DH  33  27  81.82 

3  e-Store  85  56  65.12 

4  LIS  26  23  88.46 

5  Puget  36  27  75.00 

6 Agentmom 28 22 78.57 

7 Mashbot 35 34 97.14 

8 Pontis 135 80 59.26 

9 Microcare 123 85 69.11 
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Table 2 showcases the results of a feature extraction process applied to Software Requirement 

Specifications (SRS) documents. By analyzing the data, we learnt about how effective feature extraction 

technique is. We also identified areas that need to be improved. 

A key observation is the significant variation in success rates across different SRS documents. The 

percentage of requirement sentences from which a feature was successfully extracted ranges from as 

low as 59.26% (Pontis) to as high as 97.14% (Mashbot). This suggests that the effectiveness of the 

feature extraction process can differ depending on the specific SRS document it's applied to. 

Several factors could contribute to these variations. The complexity of the language used in the SRS 

documents, the way requirements are structured, and the capabilities of the feature extraction algorithm 

itself all play a role. For instance, documents with highly technical language or poorly organized 

requirements might pose challenges for the feature extraction process. 

Mashbot stands out with a very high success rate, indicating that the feature extraction process was 

highly effective in identifying features from its requirement sentences. This suggests that the SRS 

document for Mashbot might be well-structured and written in a way that aligns well with the feature 

extraction algorithm's capabilities. 

Documents like Pontis and Microcare have significantly lower success rates. This implies that the 

feature extraction process struggled to extract features from a substantial portion of their requirement 

sentences. Further investigation into these specific cases might reveal areas where the algorithm can be 

improved or the SRS documents can be restructured for better feature extraction. This table emphasizes 

the importance of evaluating feature extraction techniques in a practical setting using real-world SRS 

documents. While the process appears successful for some documents, there's the need for improvement 

in others. By analyzing these results, developers can identify and address potential shortcomings in the 

feature extraction process, ensuring it effectively captures the essential features from their SRS 

documents. 

In terms of classification of the features, the four models being compared (Figure 3) on the x-axis are 

SVM, Decision Tree, Naive Bayes, and KNN. Based on the gradings on the y-axis and heights of the 

bars, the SVM model appears to have the highest bars across all metrics, suggesting it is the best 

performing model for this particular text classification task. 

The Decision Tree and KNN models have lower bars compared to SVM, indicating they might have 

performed a little worse on this task based on the metrics chosen, but it shows that they performed 

relatively better than the Naïve Bayes. The actual values of the comparison are shown in Table 4. 

Table 3. Feature Classification Comparison 

No  SRS  Accuracy Precision Recall F1-Score  

1  CCTNS  0.92 0.94 1.00 0.96  

2  DH  0.95 0.93 0.93 0.90  

3  e-Store  0.90 0.95 0.70 0.73  

4  LIS  0.90 0.88 0.90 0.83  

5  Puget  0.79 0.74 0.73 0.67  

6 Agentmom 0.80 0.87 0.80 0.71  

7 Mashbot 0.82 0.89 0.84 0.90  

8 Pontis 0.75 0.88 0.69 0.71  

9 Microwave 0.90 0.89 0.92 0.91  

 

Table 4. Model Comparison 

Model  Ave. Accuracy  Ave. Precision Ave. Recall Ave. F1-Score 

SVM 0.86 0.89 0.83 0.86 

DT 0.82 0.83 0.80 0.82 
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NB 0.80 0.82 0.78 0.79 

KNN 0.81 0.82 0.79 0.81 

 

 
Figure 3: Graphical Comparison of the Models 

 

Automating SPLE processes by extracting and classifying features, essential for modeling software 

product lines, is highly feasible, as demonstrated by the outcome of the study. Traditionally, this 

involves several steps: feature extraction, classification, feature modeling, and product configuration. 

SPLE is valuable for developing similar software products efficiently, but managing its processes, 

especially feature management, can be time-consuming and error-prone. Manual feature extraction and 

classification are prone to inconsistency and errors, particularly in complex product lines. 

Automating these tasks offers a compelling solution. NLP tools were used to extract features from 

requirements documents using relevant keywords. SVM (and other machine learning algorithms) 

classified the features as mandatory or optional based on predefined rules, as shown by the system's 

performance in F1-scores. Classified features are used to build a feature catalogue, guiding the creation 

of feature models that capture relationships between features. 

Once a feature model is in place, automation can extend to product configuration, generating valid 

product variants based on desired features and predefined constraints. This automation streamlines 

SPLE processes, as demonstrated by the success of this simple classification model. However, it's 

important to recognize limitations and adapt to the evolving nature of product lines. Combining 

automation with human expertise and continuous improvement can significantly enhance SPLE 

efficiency and effectiveness. 

4 Conclusion 

This study highlighted the potential of automating Software Product Line Engineering (SPLE) 

processes through feature extraction and classification. Automating these tasks can streamline SPLE, 

saving time and reducing errors. A key aspect of SPLE involves classifying features as mandatory 

(present in all products) or optional (included only in specific variants). The study demonstrated that 

SVM effectively performed binary classification. The advantage of a simple classification model, like 

the one used in the study, lies in its efficiency and ease of interpretation. However, for very complex 

product lines with numerous features and intricate relationships, more advanced models are necessary. 
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