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Abstract

Ballistic protection materials play a decisive role in modern defense systems, armored vehicles, and
personal protection equipment, where the dual requirement of high impact resistance and reduced structural
weight presents a persistent engineering challenge. This review presents a comprehensive and critical
assessment of high-hardness armor steels, with particular emphasis on Ramor steel grades, alongside hybrid
composite laminate systems used for ballistic protection. Peer-reviewed experimental investigations,
standardized ballistic testing methodologies, and validated numerical simulations reported in the literature
are systematically reviewed and compared. Special focus is placed on material behavior under high strain-
rate loading, dominant failure mechanisms, and finite element modeling approaches implemented using
ABAQUS/Explicit, including Johnson—Cook constitutive and damage models for steels and progressive
damage formulations for composites. The review highlights the comparative performance, advantages, and
limitations of monolithic steel, composite, and hybrid armor systems. Finally, current research gaps and
future directions are identified to guide the development of lightweight, high-performance ballistic
protection materials.

Keywords

Ballistic protection; Ramor steel; high-hardness armor steel; hybrid composite laminates; finite element
modeling; ABAQUS

1. Introduction

Ballistic protection systems are engineered to withstand high-velocity projectile impacts while maintaining
structural integrity and minimizing weight. Historically, rolled homogeneous armor and conventional steel
plates have been extensively used due to their predictable mechanical behavior and ease of fabrication [1],
[2]. However, increasing threat levels and mobility requirements in modern defense platforms have exposed
the limitations of traditional armor solutions, particularly their high density and associated mass penalties.
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Figure 1. General Classification of ballistic armor material (monolithic steel, composite, hybrid armor
concept).

High-hardness armor steels, such as Ramor grades, have emerged as an effective solution by offering
enhanced penetration resistance through optimized microstructures and heat treatment routes [3]—[6]. At
the same time, fiber-reinforced composite laminates have gained prominence due to their superior specific
energy absorption and lightweight characteristics [7], [8]. Despite extensive individual studies on metallic
and composite armor systems, a clear and integrated understanding of their comparative ballistic
performance remains limited. This review aims to bridge that gap by synthesizing experimental, analytical,
and numerical findings reported in the literature.

2. Literature Review

2.1 Ballistic Performance of Armor Steels

The ballistic behavior of armor steels has been widely investigated to understand penetration mechanics
and failure modes under high-velocity impact. Bervik et al. demonstrated that armor steels subjected to
normal projectile impact typically fail through localized shear deformation, resulting in plugging or

adiabatic shear band formation [9]. Subsequent studies confirmed that increasing steel hardness generally
improves ballistic resistance, although it may reduce ductility and fracture toughness [10], [11].
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Figure 2. Projectile impact failure modes in armor steel (plugging, petaling, shear localization)

Specific investigations on Ramor 400, 500, and 550 steels indicate that their performance is strongly
influenced by microstructural characteristics such as martensite morphology and carbide distribution [12],
[13]. Ballistic testing using standard projectiles, including 7.62 mm armor-piercing rounds, has shown that
Ramor steels provide consistent ballistic limits when appropriately heat treated [14]. Microstructural
analyses further reveal that tempered martensitic structures contribute to the balance between hardness and
impact resistance [15].

10428 isrdo.com 3



Vol-3 Issue-2 2025
Scientific Research Journal of Science, Engineering and Technology
ISSN: 2584-0584, Peer Reviewed Journal

Figure 3. Microstructure of high-hardness armor steel (tempered martensite morphology)

Table 1. Properties of Ramor Steels

Grade Hardness Density g/cm® | Ballistic Limit Key Microstructure
(HB) (V50, 7.62
mm AP)
Ramor 400 ~400 7.78 Moderate Tempered
Martensite
Ramor 500 ~500 7.78 High Fine martensite
+ carbides
Ramor 550 ~ 550 7.78 Very high Refined
Martensite

Table 1 compares Ramor steel grades, showing that increased hardness from Ramor 400 to 550 enhances
ballistic resistance while density remains constant. The microstructural evolution—from tempered to
refined martensite with carbides—highlights the role of heat treatment in optimizing penetration resistance.

10428 isrdo.com 4



Vol-3 Issue-2 2025
Scientific Research Journal of Science, Engineering and Technology
ISSN: 2584-0584, Peer Reviewed Journal

2.2 Composite and Hybrid Composite Laminates

Composite armor systems rely on different energy dissipation mechanisms compared to metallic armor.
Instead of plastic deformation, composites absorb energy through fiber stretching, rupture, matrix cracking,
and interlaminar delamination [16]. Abrate and Lopez-Puente et al. demonstrated that laminate architecture,
fiber orientation, and stacking sequence play a critical role in determining ballistic resistance [17], [18].

Fiber Breakage Matrix Cracking Delamination

Figure 4. Schematic showing fiber breakage, matrix cracking, delamination

Aramid and UHMWPE fiber composites are particularly attractive for ballistic applications due to their
high tensile strength and low density [19], [20]. Hybrid composite laminates, which combine different fiber
types or matrix systems, have been proposed to improve overall performance by balancing stiffness,
toughness, and cost [21]. Recent reviews emphasize that delamination is often the dominant energy
absorption mechanism in laminated composite armor systems [22].
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Figure 5. Composite laminate stacking sequence under ballistic impact
2.3 Steel-Composite Hybrid Armor Systems

Hybrid armor systems integrate a metallic strike face with a composite backing layer to exploit the
advantages of both material classes [23]. Experimental studies show that the steel layer blunts, fractures, or
erodes the projectile, while the composite layer absorbs the remaining kinetic energy and limits back-face
deformation [24], [25]. Such configurations often achieve superior ballistic performance compared to
monolithic steel plates of equivalent areal density.
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Figure 6. Steel strike face + composite backing schematic
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Figure 7. Post-impact comparison of steel plate vs hybrid armor
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3. Ballistic Testing Standards

To ensure reproducibility and comparability of ballistic performance, standardized testing protocols are
widely employed. Standards such as N1J 0101.07, EN 1522, and NATO STANAG 4569 define threat levels,
projectile types, impact velocities, and acceptance criteria [26]-[28]. These standards provide a common
framework for evaluating armor materials across experimental studies and industrial applications.

S
E \‘\
2.5 nr-
Spall 2 \‘\
Catch = ~_10m
Box 1 TR -
\
Holder ) T
fixture / ST
Target i
Velocity
measurers

Figure 8. Standard ballistic test setup schematic
4. Finite Element Modeling and ABAQUS Simulations

Numerical simulation has become an indispensable tool in ballistic research due to the high cost and
logistical complexity of experimental testing [29]. ABAQUS/Explicit is widely adopted for simulating
high-velocity impact events because of its robust handling of large deformations, contact interactions, and
high strain-rate effects [30].

(q)

Figure 9. FE model geometry of projectile—target interaction
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The Johnson—Cook constitutive and damage models are commonly applied to describe the behavior of
armor steels under dynamic loading [31], [32]. For composite laminates, continuum damage mechanics
models and cohesive zone formulations are used to simulate fiber failure and interlaminar delamination
[33]-[35]. Several validation studies report good agreement between simulated and experimental ballistic
limits when material parameters are carefully calibrated [36].
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Figure 10. Johnson—Cook stress—strain and damage model curves
5. Comparative Performance and Critical Analysis

High-hardness armor steels such as Ramor provide excellent resistance to penetration and are well suited
for severe threat levels [37]. However, their relatively high density limits their use in weight-sensitive
applications. Composite laminates offer high specific energy absorption and reduced mass but may exhibit
reduced durability and sensitivity to environmental conditions [38]. Hybrid armor systems represent a
promising compromise, although challenges remain in optimizing layer thickness, interface bonding, and
multi-hit performance [39], [40].
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Figure 11. Comparison of areal density vs ballistic resistance (steel vs composite vs hybrid)

The graph demonstrates that composites achieve higher ballistic efficiency at lower areal density, while
steels provide superior resistance at the cost of weight. Hybrid systems balance both, offering intermediate

density with enhanced resistance.

Table 2. Comparative performance

composite absorbs
residual energy

System Areal Density Energy Strengths Weaknesses
Absorption
Mechanism
Monolithic Steel High Plastic High penetration Heavy, limited
deformation, shear resistance mobility
plugging
Composite Low Fiber rupture, Lightweight, high Sensitive to
delamination specific environment
absorption
Hybrid Medium Steel blunts Balanced Interface bonding,
projectile, performance cost
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This comparison emphasizes the trade-offs among armor systems: steels deliver maximum penetration
resistance but are heavy; composites are lightweight yet environmentally sensitive, and hybrids combine
the strengths of both with interface challenges.

6. Future Research Directions

Future research should prioritize systematic investigation of multi-hit ballistic performance in hybrid
systems [41], the effects of environmental exposure on composite armor durability [42], and the
development of advanced constitutive models incorporating strain-rate and temperature dependence [43].
Improved experimental validation under realistic combat conditions is also essential [44].

7. Conclusions

This review provides a comprehensive synthesis of published research on Ramor steels and hybrid
composite laminates for ballistic protection. The findings indicate that hybrid armor systems offer the most
promising pathway toward achieving lightweight, high-performance ballistic protection. Continued
integration of experimental testing and validated numerical modeling is essential for advancing armor
material design and application.
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