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Abstract 

Maintaining the efficiency of solar photovoltaic (PV) systems is crucial for optimal energy production. 

Traditional invasive methods for diagnosing PV panel health are labor-intensive and time-consuming. This 

paper presents an advanced, non-invasive diagnostic approach that uses an enhanced ensemble classifier 

to identify faults, degradation, and performance issues in solar PV panels. By leveraging multiple machine 

learning models, the ensemble classifier accurately assesses the condition of panels based on non-invasive 

input parameters like voltage, current, and temperature. Simulation results validate the improved accuracy 

and robustness of the proposed method over individual classifiers. 

Keywords 

Solar PV panels, Non-invasive health monitoring, Ensemble classifier, Fault detection, Machine learning, 

Diagnostic accuracy, Renewable energy, Voltage, Current, Temperature analysis, Predictive maintenance 

 

1. Introduction 

1.1 Background 

With the growing reliance on renewable energy, solar photovoltaic (PV) systems have become essential 

to sustainable energy production. However, the efficiency of these systems can be impacted by several 

factors, such as aging, dirt accumulation, shading, or mechanical faults. Traditional maintenance 

techniques for identifying and diagnosing these issues are often invasive, requiring physical inspections, 

which are costly and time-consuming. 

Non-invasive health monitoring techniques offer a promising alternative by utilizing sensor data to assess 

the condition of PV panels without requiring direct physical intervention. Machine learning techniques, 

particularly ensemble methods, have shown great potential in improving the accuracy and reliability of 

health diagnostics. Combining the predictive capabilities of multiple classifiers, ensemble models can 

offer a robust solution to accurately diagnose the health of PV panels based on input data. 

1.2 Problem Statement 

Finding deterioration and flaws in solar PV panels quickly and accurately without intrusive procedures is 

a significant difficulty in panel maintenance. In this study, we provide a classification algorithm that uses 

ensembles of variables to diagnose solar PV panel health using non-invasive data, including irradiance 

levels, temperature, current, and voltage. 
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1.3 Contributions 

The primary contributions of this research are: 

• Developing a non-invasive diagnostic model for solar PV panels using an ensemble classifier. 

• Comprehensive analysis of the effectiveness of ensemble models over single classifiers in 

improving diagnostic accuracy. 

• Implementation of the model using real-world data to validate its performance. 

 

2. Literature Review 

2.1 Existing Monitoring Techniques 

Traditional monitoring techniques for solar PV systems rely heavily on periodic manual inspections, 

infrared thermography, or electrical testing. These methods are effective but often involve significant 

downtime and labor costs. Additionally, these invasive techniques may not detect faults early enough, 

leading to losses in energy production. 

2.2 Machine Learning in PV Panel Diagnostics 

The capacity of machine learning algorithms to sift through mountains of data and provide reliable 

forecasts has made them more attractive to solar PV diagnostics researchers. For fault diagnosis in PV 

systems, several research has investigated the use of ANNs, SVMs, and DTs. On the other hand, poor 

performance might occur when a single classifier cannot handle situations with significant volatility or 

bias. 

2.3 Ensemble Learning in Fault Detection 

Among the many successful uses of ensemble learning is its ability to identify faults in energy systems. 

This method combines several weak learners into a single powerful prediction model. Techniques 

including bagging, boosting, and stacking have been extensively used to make fault detection algorithms 

more resilient. This research employs an ensemble classifier strategy to improve the precision of solar PV 

panel health diagnostics. 

 

3. Methodology 

3.1 Data Collection 

Solar photovoltaic (PV) panel sensor data acquired under real-world working circumstances is the basis of 

this investigation. Over a specified time frame, data was collected from several PV systems subject to 

different operating and climatic conditions. The following parameters were specifically gathered: 

• Voltage (V): The voltage differential across the PV cells directly affects power generation. 
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• Current (I): The current that the PV panel produces as an electric charge. An essential measure 

of the panel's ability to generate electricity is current, which is closely related to voltage. 

• Temperature (T): The maximum and minimum temperatures the PV panels can withstand while 

functioning, as recorded at both the surface and ambient levels. Lower performance is often seen 

at higher temperatures regarding the efficiency of photovoltaic cells. 

• Irradiance (G): A PV panel's irradiance is the quantity of sunshine that reaches its surface in 

watts per square meter (W/m²). The amount of irradiance levels that affect panel output is an 

important variable. 

• Power Output (P): Using data on voltage and current, determine the panel's actual power output. 

It shows how well the PV panel is doing right now. 

Several sensors placed at various places along the PV system's path were used to gather the data. The 

sensors could continually monitor the panel's functioning and were calibrated to assure accuracy. Since 

variables outside of PV panels' control significantly impact their operational effectiveness, the dataset 

includes meteorological data (such as humidity and wind speed). 

A time-series dataset comprising data captured at regular intervals provides a detailed picture of the 

panel's performance over the long and short term. The dataset offers a solid foundation for problem and 

performance deterioration diagnosis by recording various operating circumstances, including temperature, 

sunshine, and potential panel shading. 

Two parts of the gathered data were used to train and test the suggested ML model: 

• Training Set: 70% of the data was used to train the ensemble classifier. This set includes 

instances of both regular operation and known faults, allowing the model to learn the patterns 

associated with different health states of the PV panels. 

• Testing Set: 30% of the data was reserved for testing and validating the model's performance. 

This dataset is independent of the training set and is used to assess the model's accuracy in 

diagnosing previously unseen data. 

 

3.2 Preprocessing 

The raw data collected from the PV panels required preprocessing before being fed into the machine 

learning models. The preprocessing steps are critical to ensure the data is clean, consistent, and suitable 

for model training. The steps involved are detailed below: 

3.2.1 Handling Missing Data 

Due to sensor malfunctions or data transmission issues, certain records in the dataset contained missing 

values. If not addressed, missing data can severely impact the model's performance. The following 

methods were applied to manage this issue: 

• Imputation: To fill in missing values for continuous variables like voltage, current, and 

temperature, statistical approaches like median and mean imputation were used. More 

sophisticated imputation methods, such as k-nearest neighbours (KNN) imputation, were used to 

fill in the blanks when patterns in the missing data were found. 
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• Deletion of Irrelevant Records: We eliminated the impacted entries to keep the dataset intact 

where there were considerable chunks of missing or corrupted data. 

3.2.2 Noise Removal 

Variations in the surrounding environment or measurement mistakes may introduce noise into sensor 

data. Data noise may hinder machine learning model performance by masking actual patterns. This was 

reduced by using the following noise-cancellation strategies: 

• Smoothing Filters: To keep longer-term patterns intact and reduce the impact of short-term 

variations, a moving average filter was applied to the data. 

• Outlier Detection: Statistics tools like the Z-score and the interquartile range (IQR) were used to 

identify data points that were considerably out of the ordinary compared to the typical operating 

ranges. The influence of the detected outliers on the dataset dictated whether they were 

eliminated or replaced using interpolation methods. 

3.2.3 Feature Selection 

If you want to accurately diagnose the state of your solar PV panels, feature selection is an essential first 

step. There is a correlation between the amount of valuable data points and the amount of noise 

introduced into the model by either unnecessary or redundant characteristics. The following methods were 

used to prioritize the features: 

• Correlation Analysis: Pearson's correlation coefficient was used to identify relationships 

between the different features. Features that were highly correlated with the target variable (e.g., 

power output or panel health status) were retained, while redundant features with high 

multicollinearity were removed. 

• Mutual Information: Mutual information scores were calculated to measure the dependency 

between input features and the health status labels. This helped identify non-linear relationships 

that correlation analysis might miss. 

The features that were retained after feature selection included voltage, current, irradiance, temperature, 

and power output. These variables were found to be highly indicative of the overall health and 

performance of the PV panels. 

3.2.4 Feature Scaling and Normalization 

We used feature scaling to ensure every feature contributed the same amount to the model. Models that 

depend on distance-based computations, such as support vector machines (SVMs), could fail if features 

aren't scaled correctly since various features function on different scales (e.g., the voltage in volts, the 

temperature in degrees Celsius). 

• Min-Max Normalization: To make all variables comparable, features were normalized using 

min-max to a range of 0 to 1. 

• Standardization: A few models assumed typically distributed data by standardizing features to 

have a mean of 0 and a standard deviation of 1, especially for algorithms that work on this 

assumption. 
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3.2.5 Data Augmentation 

Using synthetic data augmentation methods, the dataset was further enhanced. If the dataset is skewed 

towards one class (more data for healthy panels than defective panels, for example), augmentation may 

assist in leveling the playing field. Synthetic instances of minority classes were generated using 

techniques like the Synthetic Minority Over-sampling Technique (SMOTE), which improved the model's 

capacity to spot unusual problems. 

3.3 Ensemble Classifier Model 

Our strategy relies on an ensemble classifier to increase diagnosis accuracy, which incorporates different 

machine learning algorithms. Given the encouraging results of decision trees, support vector machines 

(SVMs), and random forests (RF) in earlier defect detection research, we decided to use a hybrid of these 

three approaches. The ensemble approach was applied to decrease bias and variance using boosting and 

bagging, respectively. 

3.3.1 Bagging Approach 

We used bagging, or Bootstrap Aggregating, to lower the model's variance. We used majority voting to 

combine the predictions of several classifiers trained on separate portions of the training data. 

3.3.2 Boosting Approach 

To make the model less biased, we used boosting. To train weak learners progressively, with each 

succeeding learner emphasizing the preceding one's errors, we used the Adaptive Boosting (AdaBoost) 

method. This enhanced the model's overall accuracy. 

3.4 Model Evaluation 

The ensemble classifier was evaluated using several performance metrics, including: 

• Accuracy: The proportion of correctly classified instances. 

• Precision: The ratio of correctly predicted positive observations to the total predicted positives. 

• Recall: The ability of the classifier to identify positive samples. 

• F1-score: The harmonic mean of precision and recall. 

Against further demonstrate the improvement in diagnostic performance, we compared the ensemble 

classifier against individual classifiers like SVM and random forests. 

 

4. Results and Discussion 

4.1 Performance of Ensemble Classifier 

The ensemble classifier outperformed individual classifiers in diagnosing the health status of solar PV 

panels. Table 1 presents the results, showing higher accuracy, precision, recall, and F1 scores for the 

ensemble model compared to SVM and random forests alone. 
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Model Accuracy Precision Recall F1-score 

Support Vector Machine (SVM) 87.5% 85.3% 84.9% 85.1% 

Random Forest (RF) 89.2% 88.1% 87.7% 87.9% 

Ensemble Classifier 92.8% 91.5% 91.2% 91.3% 

The ensemble classifier demonstrated superior performance due to its ability to mitigate the weaknesses 

of individual classifiers. The model achieved higher predictive power by combining multiple learners, 

particularly in distinguishing between different fault types. 

4.2 Diagnostic Accuracy in Non-Invasive Monitoring 

Solar PV panels' health state might be effectively diagnosed using non-invasive data, such as voltage and 

current monitoring. The findings show that ensemble learning and non-invasive approaches may reach 

excellent accuracy levels without physical intervention. 

4.3 Practical Implications 

Solar PV panel real-time monitoring has never been more affordable than with the suggested method. The 

total efficiency and lifetime of PV systems are improved, and the need for manual inspections is reduced, 

thanks to the ability to identify performance concerns early. 

 

5. Conclusion 

This research introduced an ensemble classifier-based non-invasive health diagnostic system for 

photovoltaic (PV) panels. Reliable defect identification without physical intervention is made possible by 

the proposed model, which incorporates different machine-learning approaches to boost diagnostic 

accuracy. Results from both simulations and experiments show that the ensemble classifier outperforms 

conventional single classifiers regarding accuracy and resilience. 

A wider variety of climatic circumstances should be included in the dataset in future studies, and the 

system's real-time deployment in solar power plants should be investigated. Further investigation into the 

possibility of combining the model with IoT technologies for ongoing monitoring will also be undertaken. 
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