

Toward a Unified Gauge–Geometric Paradigm: Contemporary Advances in Merging Gravity with the Standard Model

Joseph Omekagu, Student, Modern physics, Federal University of Technology, Owerri, Imo State, Nigeria

Gloria Ezeja, Lecture, Modern physics, Federal University of Technology, Owerri, Imo State, Nigeria

Abstract

Contemporary theoretical physics faces its most persistent challenge: constructing a coherent, predictive, and mathematically sound unification framework that merges quantum field theory with the geometric foundations of general relativity. Recent developments across gauge-theoretical, geometric, and scalar-discrete approaches have produced innovative directions aiming to bridge this foundational gap. This review synthesizes insights from modern gauge-gravity unification theories, including gauge-induced gravity, nonlinear geometric frameworks, holomorphic unification, consistent gauge actions, and quantum-field-theoretic treatments of gravity. Additionally, discrete scalar frameworks highlight alternative pathways beyond continuum geometry. By integrating these diverse viewpoints, the review identifies conceptual convergence points, assesses theoretical consistency, outlines mathematical innovations, and maps out open questions in the pursuit of a unified physical law. The objective is to present a clear, critical synthesis of current research trajectories and to highlight how modern gauge structures and geometric reformulations may ultimately lead to a full quantum theory of gravity compatible with the Standard Model.

Keywords: Unified gauge symmetries, quantum gravity, Standard Model unification, holomorphic field theory, Weyl–Born–Infeld geometry, discrete scalar framework

1. Introduction

Unifying gravity with the Standard Model has remained one of the major scientific objectives since the early development of quantum field theory. The Standard Model describes three of the four fundamental forces using gauge symmetries and quantum fields, whereas general relativity represents gravity as a geometric phenomenon arising from spacetime curvature. This deep conceptual difference creates difficulties in quantization, renormalization, and theoretical consistency. Recent years, however, have seen significant progress toward reconciling these distinct frameworks, motivated by both mathematical innovation and experimental hints of new physics.

Several recent works provide strong motivation for a unified structure. For instance, gravity emerging from internal unitary symmetries is a major conceptual development discussed by Partanen and Tulkki

(2025). More advanced geometric frameworks such as the Weyl–Dirac–Born–Infeld (WDBI) action extend nonlinear geometric and gauge dynamics in a unified direction, as proposed by Ghilencea (2025). Holomorphic representation of gravitational and gauge fields suggests deeper analytic symmetry, investigated by Moffat and Thompson (2025). Consistent gauge-theoretic action principles have also been developed to merge gauge actions and geometric formulations, an approach refined by Gallagher et al. (2024) and conceptually rooted in the earlier work of Krasnov (2012). From the quantum-field-theoretic side, gravity viewed as a renormalizable quantum field theory offers a major conceptual bridge, as analyzed by Percacci (2023). Complementing the continuum picture, discrete scalar frameworks such as Pole Theory propose a unified algebraic structure (Raika, 2025).

Together, these diverse viewpoints demonstrate a major shift toward symmetry-driven unification approaches. This review draws these developments into a coherent synthesis, analyzing their mathematical foundations, conceptual innovations, and implications for modern theoretical physics.

2. Gravity from Unitary Gauge Symmetries

Partanen and Tulkki (2025) propose an approach in which gravity emerges from four one-dimensional unitary gauge symmetries rather than exclusively from geometric curvature. This formulation places gravity within the internal structure of gauge dynamics, making it more closely related to the Standard Model. Their model demonstrates how gauge potentials constructed from these U(1)-like symmetries can reproduce gravitational behavior typically associated with general relativity.

A key aspect of their formulation is that gravitational effects are encoded algebraically through gauge interactions, simplifying quantization efforts. Because gauge theories are already renormalizable and widely used in particle physics, this approach reduces the conceptual gap between gravity and the other forces. Their unified structure remains compatible with Standard Model particle content without requiring new exotic fields, which makes it promising in terms of phenomenological consistency.

This interpretation further reveals how internal symmetry might underlie spacetime structure, hinting at a scenario where geometry itself becomes emergent. The theory naturally reproduces Einstein-like dynamics in low-energy limits while potentially predicting new high-energy behavior. It also creates opportunities for reinterpretation of cosmological phenomena such as dark energy and mass generation.

3. Weyl–Dirac–Born–Infeld Unification Framework

The WDBI action constructed by Ghilencea (2025) integrates scale symmetry, Dirac scalar fields, and Born–Infeld nonlinearities into a unified geometric structure. This formulation uses Weyl geometry to introduce local scale invariance while the Born–Infeld component provides natural stability against divergences. The result is a robust theoretical framework in which both gravity and field interactions emerge from complex geometric and scalar dynamics.

The theory offers a natural mechanism for mass generation through the breaking of Weyl symmetry, linking the behavior of matter fields with spacetime geometry. Its high-energy structure is regulated by the Born–Infeld determinant, which prevents singularities and ensures consistency across extreme

regimes. In this way, the theory can reproduce general relativity as a limit while also allowing deviations at high curvature, potentially relevant for black holes or early-universe cosmology.

The WDBI action also preserves compatibility with Standard Model symmetries, integrating fields in a manner that maintains gauge invariance. It demonstrates that gravity can be unified with other forces not by introducing new particles but by extending the geometric foundations of field theory. Its mathematical coherence and symmetry structure make it an important contribution to contemporary unification research.

4. Holomorphic Unified Field Theory

Moffat and Thompson (2025) present a holomorphic unification model where gravitational and Standard Model fields exist within a complex manifold. Fields and their interactions are expressed in holomorphic and anti-holomorphic components, granting the theory additional analytic structure that simplifies certain nonlinearities. This approach extends the geometric foundations of field theory into the complex domain, providing new forms of symmetry and dual relationships.

In this model, the gravitational field arises from complex vierbeins and curvature tensors, offering an alternative to traditional real-valued formulations. Under appropriate constraints, the theory reduces to Einstein's equations, showing consistency with known physics while also predicting additional structure at high energies. This holomorphic structure opens the door to natural generalizations involving complex geometry, potentially providing insights into quantum gravity or supersymmetric behavior.

The analytic features of holomorphic manifolds make quantization more tractable, converting complex nonlinear structures into manageable forms. By linking gravity and gauge interactions under shared analytic rules, the theory suggests that unification may lie in a deeper analytic structure rather than expanded field content. This makes it one of the most mathematically elegant approaches to unification.

5. Gravity as a Quantum Field Theory

The work of Percacci (2023) reconsiders gravity as a renormalizable quantum field theory under the principles of asymptotic safety. This perspective treats the metric or connection fields similarly to gauge fields, allowing gravitational couplings to flow toward ultraviolet fixed points. If such fixed points exist, gravity becomes predictive and quantizable at all energy scales.

This approach links quantum field theory and general relativity through the renormalization group rather than geometric reinterpretation. It shows that gravitational interactions can be quantized without introducing strings, higher dimensions, or exotic degrees of freedom. Instead, the theory integrates quantum corrections and large-scale behavior in a mathematically consistent manner, bridging the long-standing gap between quantum mechanics and curved spacetime.

The framework also uses symmetry-based tools such as gauge fixing and invariance principles, reinforcing its compatibility with Standard Model methods. This makes it a critical component of modern unification discussions, grounding gravity within field-theoretic formalism rather than geometric abstraction.

6. Gauge-Theoretic Reformulation of Gravitational Action

Gallagher et al. (2024) develop a consistent first-order action for gauge theories that applies equally well to gravity and non-gravitational interactions. This formulation establishes conditions for unifying gauge fields and geometric connections within the same action functional. Such first-order structures are particularly attractive for quantization, simplifying the mathematics of gauge-gravity interaction.

The conceptual foundation for this approach traces back to Krasnov (2012), who developed a pure-connection formulation of gravity. In this model, gravity is constructed entirely from gauge connections, without using a metric as a fundamental field. The metric instead emerges from deeper gauge structures, which aligns gravity conceptually with Yang–Mills theories rather than geometric curvature.

Together, these contributions demonstrate that gravity may be reinterpreted as fundamentally gauge-theoretic. This reduces the structural distance between gravity and Standard Model interactions and may provide clearer routes to quantization. Such formulations are essential for embedding gravity into a unified gauge-theoretic structure.

7. Discrete Scalar Unification Framework (Pole Theory)

Raika (2025) proposes Pole Theory, a discrete scalar approach in which quantum mechanics and general relativity emerge from algebraic interactions among scalar poles. Instead of continuous fields or smooth spacetime geometry, the theory treats discrete scalar objects as the primary building blocks of physical reality. Their interactions generate effective curvature and quantum wave phenomena in the continuum limit.

This approach circumvents classical issues associated with continuous spacetime, including infinities, singularities, and renormalization difficulties. Pole Theory focuses on algebraic symmetry and scalar dynamics rather than gauge or geometric formulations, yet it shares conceptual similarities with symmetry-based unification approaches.

Although still in development, Pole Theory offers a fresh direction in unification research, challenging the assumption that unification must emerge from continuous geometric or gauge structures. It opens questions about the fundamental ontology of spacetime, quantum fields, and gravity, making it an intriguing alternative perspective within the broader landscape of unification research.

8. Synthesis and Future Directions

Across these theories, a clear pattern emerges: gravity is increasingly viewed as a phenomenon rooted in symmetry, gauge structure, or algebraic interaction rather than purely geometric curvature. Whether derived from internal unitary symmetries, Weyl–Born–Infeld geometry, holomorphic manifolds, pure

connections, renormalization flows, or discrete poles, modern research points toward a symmetry-centered foundation for unification.

Convergence between approaches suggests that geometry, gauge symmetry, and quantum theory may ultimately be different expressions of a deeper underlying structure. Future work must address predictive mechanisms, experimental consistency, and connections with cosmological phenomena such as dark energy and early-universe inflation. Mathematical challenges remain significant, but symmetry-based unification is rapidly emerging as one of the most promising paths forward.

Conclusion

The pursuit of a unified theory that reconciles gravity with the Standard Model continues to drive some of the most profound theoretical developments in modern physics. The frameworks reviewed in this study demonstrate that significant conceptual convergence is emerging across diverse approaches, each reshaping the foundations of how gravity is understood. Unitary gauge-symmetry models suggest that gravity may originate from internal algebraic structures rather than purely from spacetime geometry. Nonlinear geometric formulations such as the Weyl–Dirac–Born–Infeld action reveal that stability, mass generation, and high-energy behavior can be unified under extended geometric and gauge principles. Holomorphic field theories expand the mathematical landscape by embedding gravity and particle physics within complex analytic structures, offering new routes to quantization and symmetry unification.

Quantum-field-theoretic approaches, particularly those grounded in renormalization group methods, show that gravity may be quantizable without abandoning its deep geometric roots. Pure-connection formulations and first-order gauge-theoretic actions demonstrate that geometry itself may emerge from more fundamental gauge variables, bringing gravity structurally closer to the Standard Model. Even discrete-scalar theories such as Pole Theory highlight that unification may not depend on continuous fields at all, but on deeper algebraic dynamics underlying quantum and geometric behavior.

Together, these approaches indicate that unification may arise from symmetry, algebra, or discrete structure rather than from traditional curvature-based concepts. They collectively suggest that gravity is not an outlier among fundamental interactions but a natural extension of the symmetry principles governing particle physics. Future research will need to clarify which mathematical framework best captures the true structure of the universe, how these theories connect with observable phenomena, and what predictions may distinguish one unified model from another. As theoretical tools advance and experimental sensitivity increases, the vision of a single, coherent framework encompassing all fundamental forces appears increasingly within reach.

Reference :

- Partanen, M., & Tulkki, J. (2025). Gravity generated by four one-dimensional unitary gauge symmetries and the Standard Model. *Reports on Progress in Physics*, 88(5), 057802. <https://doi.org/10.1088/1361-6633/adc82e>
- Ghilencea, D. M. (2025). Unification of Gravity and Standard Model: Weyl-Dirac-Born-Infeld action (Version 2). arXiv. <https://doi.org/10.48550/ARXIV.2508.10959>

- Partanen, M., & Tulkki, J. (2025). Gravity generated by four one-dimensional unitary gauge symmetries and the Standard Model. *Reports on Progress in Physics*, 88(5), 057802. <https://doi.org/10.1088/1361-6633/adc82e>
- Moffat, J.W., Thompson, E.J. Holomorphic unified field theory of gravity and the standard model. *Eur. Phys. J. C* 85, 1157 (2025). <https://doi.org/10.1140/epjc/s10052-025-14907-2>
- Percacci, R. (2023). Gravity as a Quantum Field Theory. *Symmetry*, 15(2), 449. <https://doi.org/10.3390/sym15020449>
- Gallagher, P., Koivisto, T. S., Marzola, L., Varrin, L., & Zlosnik, T. (2024). Consistent first-order action functional for gauge theories. *Physical Review D*, 109(6). <https://doi.org/10.1103/physrevd.109.1061503>
- Krasnov, K. (2012). A gauge-theoretic approach to gravity. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 468(2144), 2129–2173. <https://doi.org/10.1098/rspa.2011.0638>
- Raika, P. (2025). Pole Theory: A Discrete Scalar Framework Unifying Quantum Mechanics and General Relativity [MAIN BODY — Minimized]. *Preprints*. <https://doi.org/10.20944/preprints202505.1520.v1>
- Partanen, M., & Tulkki, J. (2025). Gravity generated by four one-dimensional unitary gauge symmetries and the Standard Model. *Reports on Progress in Physics*, 88(5), 057802. <https://doi.org/10.1088/1361-6633/adc82e>
- Bility, M. T. (2025). Quantum Gravity as Gauge Projection in the Standard Model: The Bility-Partanen Equivalence in the Emergence of Gravitation from Gauge Symmetry. Unpublished. <https://doi.org/10.13140/RG.2.2.11456.60166>